Abstract

ObjectiveThis paper investigates the impact on emergency hospital services from initiation through recovery of a ransomware attack affecting the emergency department, intensive care unit and supporting laboratory services. Recovery strategies of paying ransom to the attackers with follow-on restoration and in-house full system restoration from backup are compared.MethodsA multi-unit, patient-based and resource-constrained discrete-event simulation model of a typical U.S. urban tertiary hospital is adapted to model the attack, its impacts, and tested recovery strategies. The model is used to quantify the hospital's resilience to cyberattack. Insights were gleaned from systematically designed numerical experiments.ResultsWhile paying the ransom was found to result in some short-term gains assuming the perpetrators actually provide the decryption key as promised, in the longer term, the results of this study suggest that paying the ransom does not pay off. Rather, paying the ransom, when considered at the end of the event when services are fully restored, precluded significantly more patients from receiving critically needed care. Also noted was a lag in recovery for the intensive care unit as compared with the emergency department. Such a lag must be considered in preparedness plans.ConclusionVulnerability to cyberattacks is a major challenge to the healthcare system. This paper provides a methodology for assessing the resilience of a hospital to cyberattacks and analyzing the effects of different response strategies. The model showed that paying the ransom resulted in short-term gains but did not pay off in the longer term.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call