Abstract
<div class="section abstract"><div class="htmlview paragraph">Traditional autonomous vehicle perception subsystems that use onboard sensors have the drawbacks of high computational load and data duplication. Infrastructure-based sensors, which can provide high quality information without the computational burden and data duplication, are an alternative to traditional autonomous vehicle perception subsystems. However, these technologies are still in the early stages of development and have not been extensively evaluated for lane detection system performance. Therefore, there is a lack of quantitative data on their performance relative to traditional perception methods, especially during hazardous scenarios, such as lane line occlusion, sensor failure, and environmental obstructions. We address this need by evaluating the influence of hazards on the resilience of three different lane detection methods in simulation: (1) traditional camera detection using a U-Net algorithm, (2) radar detections using infrastructure-based radar retro-reflectors (RRs), and (3) direct communication of lane line information using chip-enabled raised pavement markers (CERPMs). The performance of each of these methods is assessed using resilience engineering metrics by simulating the individual methods for each sensor technology’s response to related hazards in the CARLA simulator. Using simulation techniques to replicate these methods and hazards acquires extensive datasets without lengthy time investments. Specifically, the resilience triangle was used to quantitatively measure the resilience of the lane detection system to obtain unique insights into each of the three lane detection methods; notably the infrastructure-based CERPMs and RRs had high resistance to hazards and were not as easily affected as the vision-based U-Net. However, while U-Net was able to recover the fastest from the disruption as compared to the other two methods, it also had the most performance loss. Overall, this study demonstrates that while infrastructure-based lane keeping technologies are still in early development, they have great potential as alternatives to traditional ones.</div></div>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.