Abstract

Ecological speciation occurs when populations evolve reproductive isolation as a result of divergent natural selection. This isolation can be influenced by many potential reproductive barriers, including selection against hybrids, selection against migrants and assortative mating. How and when these barriers act and interact in nature is understood for relatively few empirical systems. We used a mark-recapture experiment in a contact zone between lake and stream three-spined sticklebacks (Gasterosteus aculeatus, Linnaeus) toevaluate the occurrence of hybrids (allowing inferences about mating isolation), the interannual survival of hybrids (allowing inferences about selection against hybrids) and the shift in lake-like vs. stream-like characteristics (allowing inferences about selection against migrants). Genetic and morphological data suggest the occurrence of hybrids and no selection against hybrids in general, a result contradictory to a number of other studies of sticklebacks. However, we did find selection against more lake-like individuals, suggesting a barrier to gene flow from the lake into the stream. Combined with previous work on this system, our results suggest that multiple (most weakly and often asymmetric) barriers must be combining to yield substantial restrictions on gene flow. This work provides evidence of a reproductive barrier in lake-stream sticklebacks and highlights the value of assessing multiple reproductive barriers in natural contexts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call