Abstract

Larval dispersal and connectivity are key processes that drive marine metapopulation dynamics, and therefore should be well characterized when designing effective management strategies. While temperature and food availability can structure marine species connectivity patterns, their contribution has not been thoroughly investigated in highly fragmented archipelagos. We used biophysical modeling of larval dispersal to explore the connectivity patterns of species with complex life-cycles across French Polynesia (FP), a territory formed by more than a hundred small, geographically isolated islands covering an area as large as Europe. We first simulated ten years of larval dispersal to investigate the spatial and temporal (seasonal and interannual) variability in larval dispersal pathways for different hypothetical species exhibiting a range of Larval Precompetency Period (LPP) values. Then, using the black-lip pearl oyster (Pinctada margaritifera) as a model species, we accounted for variability in the LPP induced by temperature and food availability, as derived from a Dynamic Energy Budget (DEB) model. The model showed that food availability and mesoscale turbulence (eddies) in the Marquesas jointly constrained larval dispersal, reducing its potential connectivity with other archipelagos in FP. The DEB simulations also revealed seasonal and interannual variability in connectivity driven by environmental conditions. However, accounting for food and temperature effects on larval development, barely changed the connectivity pattern at regional scale due to the remoteness of this archipelago. Our study thus provides appropriate management units definition at regional scale for the species across FP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call