Abstract

BackgroundConfirmed local transmission of Zika Virus (ZIKV) in Texas and Florida have heightened the need for early and accurate indicators of self-sustaining transmission in high risk areas across the southern United States. Given ZIKV’s low reporting rates and the geographic variability in suitable conditions, a cluster of reported cases may reflect diverse scenarios, ranging from independent introductions to a self-sustaining local epidemic.MethodsWe present a quantitative framework for real-time ZIKV risk assessment that captures uncertainty in case reporting, importations, and vector-human transmission dynamics.ResultsWe assessed county-level risk throughout Texas, as of summer 2016, and found that importation risk was concentrated in large metropolitan regions, while sustained ZIKV transmission risk is concentrated in the southeastern counties including the Houston metropolitan region and the Texas-Mexico border (where the sole autochthonous cases have occurred in 2016). We found that counties most likely to detect cases are not necessarily the most likely to experience epidemics, and used our framework to identify triggers to signal the start of an epidemic based on a policymakers propensity for risk.ConclusionsThis framework can inform the strategic timing and spatial allocation of public health resources to combat ZIKV throughout the US, and highlights the need to develop methods to obtain reliable estimates of key epidemiological parameters.

Highlights

  • Confirmed local transmission of Zika Virus (ZIKV) in Texas and Florida have heightened the need for early and accurate indicators of self-sustaining transmission in high risk areas across the southern United States

  • Across Texas’ 254 counties, we find that the estimated risk of a locally sustained ZIKV outbreak rises precipitously as autochthonous cases accumulate, and that counties at the southern tip of the Texas-Mexico border and in the Houston Metropolitan Area are at the highest risk for ZIKV

  • ZIKV importation risk within Texas is predicted by variables reflecting urbanization, mobility patterns, and socioeconomic status (Additional file 1: Table S3), and is concentrated in metropolitan counties of Texas (Fig. 2a)

Read more

Summary

Introduction

Confirmed local transmission of Zika Virus (ZIKV) in Texas and Florida have heightened the need for early and accurate indicators of self-sustaining transmission in high risk areas across the southern United States. In the US, the 268 reported mosquito-borne autochthonous (local) ZIKV cases occurred in Southern Florida and Texas, with the potential range of a primary ZIKV vector, Aedes aegypti, including over 30 states [3,4,5]. As additional ZIKV waves are possible in summer 2017, public health professionals will continue to face considerable uncertainty in gauging the severity, geographic range of local outbreaks, and appropriate timing of interventions, given the large fraction of undetected ZIKV cases (asymptomatic) and economic tradeoffs of disease prevention and response [8,9,10,11]. Depending on the ZIKV symptomatic fraction, reliability and rapidity of diagnostics, importation rate, and transmission rate, the detection of five autochthonous cases in a Texas county, for example, may indicate a small chain of cases

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call