Abstract

The COVID-19 pandemic has enormously affected the economic situation worldwide, including in Indonesia resulting in 30 million Indonesian tumbling into penury. The Ministry of Social Affairs initiated a program to distribute social assistance aimed at the poorest households. ‘Aplikasi Cek Bansos’ is a public service application that aims to validate their status towards the social assistance program. Understanding the public sentiment and factors affecting public satisfaction levels is crucial to be performed. The goal of this study is to perform a comparative study of supervised machine learning to learn the sentiment of the public and the dominant variable resulting in public satisfaction. Support vector machine, Naïve Bayes dan K-nearest neighbor (KNN) are performed to seek the highest accuracy. This experiment discovered that the KNN algorithm produced outstanding performance where the accuracy hit 99.21%. Sentiment prediction indicated negative perception as the majority covering 83.81%. Trigrams analysis is performed to learn themes affecting satisfaction levels toward the application. Negative themes are grouped into the following categories: App instability, hope for improvement, navigation issues, and low-quality content. Some recommendations are offered for the Ministry of Social Affairs and developers, to overcome negative feedback and enhance public satisfaction level towards the application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.