Abstract
PurposeThe prevalence of hypoglycemia in patients with diabetes mellitus is likely underreported, particularly with regard to non-severe episodes, and representative estimates require more detailed data than claims or typical electronic health record (EHR) databases provide. This study examines the prevalence of hypoglycemia as identified in a medical transcription database.Patients and MethodsThe Amplity Insights database contains medical content dictated by providers detailing patient encounters with health care professionals (HCPs) from across the United States. Natural language processing (NLP) was used to identify episodes of hypoglycemia using both symptom-based and non-symptom-based definitions of hypoglycemic events. This study examined records of 41,688 patients with type 1 diabetes mellitus and 317,399 patients with type 2 diabetes mellitus between January 1, 2016, and April 30, 2018.ResultsUsing a non-symptom-based definition, the prevalence of hypoglycemia was 18% among patients with T1DM and 8% among patients with T2DM. These estimates show the prevalence of hypoglycemia to be 2- to 9-fold higher than the 1% to 4% prevalence estimates suggested by claims database analyses.ConclusionIn this exploration of a medical transcription database, the prevalence of hypoglycemia was considerably higher than what has been reported via retrospective analyses from claims and EHR databases. This analysis suggests that data sources other than claims and EHR may provide a more in-depth look into discrepancies between the mention of hypoglycemia events during a health care visit and documentation of hypoglycemia in patient records.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.