Abstract

Crude oil price forecasting is one of the most important topics in the field of energy research. Accordingly, numerous methods such as statistical, econometrical and intelligent approaches are applied for crude oil price forecasting. In this paper, a typical competitive learning algorithm, support vector machine (SVM), is empirically investigated to verify the feasibility and potentiality of SVM in crude oil price forecasting. For this purpose, five different prediction models, feed-forward neural networks (FNN), auto-regressive integrated moving average (ARIMA) model, fractional integrated ARIMA (ARFIMA) model, Markov-switching ARFIMA (MS-ARFIMA) model, and random walk (RW) model are used in the study. Experimental results obtained show that the SVM model outperforms the other five methods, implying that it is a fairly good candidate for crude oil price forecasting in terms of either one-step prediction or multi-step prediction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call