Abstract
Groundwater contaminants, such as chloride from road salt, pose a threat to aquatic ecosystems when and where they discharge to surface waters. Here we study the application of a laboratory toxicity bioassay to field-collected samples from contaminated groundwater discharging to an urban stream. The objectives were to assess the potential toxicity of the discharging groundwater, while also exploring the suitability of such standard tests to site groundwater. Juvenile freshwater mussels were chosen as a groundwater-appropriate (endobenthic) test organism. Groundwater was sampled from 6 sites at approximate depths of 0, 10, and 50cm below the sediment. Concentrations of chloride and several metals were above aquatic life guidelines in some samples. Exposure (96-h) to site groundwater resulted in survival of 90–100% and 80–100% for the 0-cm and deeper samples, respectively, indicating that groundwater may pose a toxicological threat to freshwater mussels. Several samples with high chloride had a survival rate of 80%, but generally there was poor correlation between survival and individual contaminants. Parallel juvenile mussel exposures using reconstituted water and NaCl predicted survival in the natural groundwater below 50% based on chloride concentrations. This indicates some protective ability of groundwater, possibly associated with water hardness. Finally, some technical issues with performing bioassays with groundwater were noted. First, aeration of previously anoxic groundwater samples caused marked changes in water quality (especially metal concentrations). Second, calcite crystals formed on the mussel shells in samples with elevated chloride and water hardness, though with no apparent negative effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.