Abstract

Climate change and urban development will exacerbate current urban heat island effects. While most studies acknowledge the importance of projected temperature increases for raising urban temperatures, little attention is paid to the impacts of future changes in urbanisation patterns. Yet, steering urban development may be an effective strategy to further limit increases in the intensity and spreading of the urban heat island effect. We describe a method that allows exploring the impact of urban development scenarios on the urban heat island effect. This paper starts with a basic analysis of the strength of this effect in a temperate climate under relatively favourable conditions based on data from amateur weather stations and own observations. It explains local variation in observed temperatures and quantifies how the urban heat island effect may develop in the coming 30 years. Using the obtained relations, we assess potential future changes building on existing scenarios of climatic and socio-economic changes and a land use simulation model. Our measurements for the Amsterdam region in the Netherlands indicate that the urban heat island effect induces maximum temperature differences with the surrounding countryside of over 3 °C on moderately warm summer days. The simulations of potential future changes indicate that strong local temperature increases are likely due to urban development. Climate change will, on average, have a limited impact on these changes. Large impacts can, however, be expected from the combination of urban development and potentially more frequent occurrences of extreme climatic events such as heat waves. Spatial planning strategies that reduce the lateral spread of urban development will thus greatly help to limit a further increase in urban heat island values.

Highlights

  • On average, urban areas are hotter than their surrounding rural areas, forming an urban heat island (UHI)

  • The spatial characteristics of urban areas trigger the formation of UHIs, but the intensity of the effect is influenced by weather conditions such as temperature, wind speed and cloud cover that vary on a daily basis (Arnefield 2003; Tarleton and Katz 1995; Todhunter and Terjung 1990)

  • Our measurements for the Amsterdam region in the Netherlands show that the UHI effect induces maximum temperature differences with the surrounding countryside of over 3 °C on moderately warm summer days with an average maximum daytime temperature and up to 5 °C on warm days

Read more

Summary

Introduction

Urban areas are hotter than their surrounding rural areas, forming an urban heat island (UHI). This effect has already been documented in the early nineteenth century for the city of London, UK (Howard 1820), and has been studied intensively since the seminal work of Chandler (1962), Oke (1973) and Landsberg (1981). Multiple reflections between buildings and roads occur before the non-absorbed solar radiation is reflected to space, a phenomenon that is sometimes referred to as an urban canyon and that can be characterised by the sky view factor (Oke 1981; Svensson 2004). In areas with a low sky view factor (i.e. narrow streets and/or high buildings), cities will trap more heat when cooling down at night

Objectives
Methods
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.