Abstract
Fire severity can be assessed by identifying and quantifying the fractional abundance of post-fire ground cover types, an approach with great capacity to predict ecosystem response. Focused on shrubland formations of Mediterranean-type ecosystems, three burned areas (Ibieca and Zuera wildfires and Peñaflor experimental fire) were sampled in the summers of 2006 and 2007. Two different ground measurements were made for each of the 356 plots: (i) 3-band high spatial resolution photography (HSRP) and (ii) the hemispherical-conical reflectance factor (HCRF) in the visible to near-infrared spectral range (VNIR, 400–900nm). Stepwise multiple lineal regression (SMLR) models were fitted to spectral variables (HCRF, first derivative spectra or FDS, and four absorption indices) to estimate the fractional cover of seven post-fire ground cover types (vegetation and soil – unburned and charred components – and ash – char and ash, individually and as a combined category). Models were developed and validated at the Peñaflor site (training, n=217; validation, n=88) and applied to the samples from the Ibieca and Zuera sites (n=51). The best results were observed for the abundance estimations of green vegetation (Radj.2 0.70–0.90), unburned soil (Radj.2 0.40–0.75), and the combination of ashes (Radj.2 0.65–0.80). In comparison of spectral data, FDS outperforms reflectance or absorption data because of its higher accuracy levels and, importantly, its greater capacity to yield generalizable models. Future efforts should be made to improve the estimation of intermediate severity levels and upscaling the developed models. In the context of fire severity assessment, our study demonstrates the potential of hyperspectral data to estimate in a quick and objective manner post-fire ground cover fractions and thus provide valuable information to guide management responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Journal of Photogrammetry and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.