Abstract
Acellular, biologically derived matrices such as small intestinal submucosa have been extensively utilized to induce tissue regeneration and remodeling of connective tissue, vascular grafts, and urinary bladder; however, decellularized scaffolds have not been explored for their potential utility in hepatic tissue engineering. In the case of both extracorporeal hepatocyte-based devices and implantable hepatocyte-scaffold tissue-engineered constructs, maintenance of hepatocellular function is of prime importance. In this study, we specifically explored decellularized, porcine, liver-derived biomatrix (LBM) as a bioresorbable scaffold for primary hepatocytes. Primary rat hepatocytes were cultured on LBM and compared with well-characterized hepatocyte culture models--double-gel cultures that promote maintenance of liver-specific functions for many weeks, and adsorbed collagen monolayers that lead to the rapid decline of hepatocellular function and viability. Hepatocytes were maintained for up to 45 days on LBM and liver-specific functions such as albumin synthesis, urea production, and P-450 IA1 activity were found to be significantly improved over adsorbed collagen cultures. Our data indicate that LBM may be a favorable alternative to existing scaffolds for tissue engineering in that it is bioresorbable, can be easily manipulated, and supports long-term hepatocellular functions in vitro.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.