Abstract
PurposeThe purpose of this paper is to examine and compare the in situ place experiences of people in Luton and Darlington.Design/methodology/approachThe study used 109,998 geotagged tweets from Luton and Darlington between 2020 and 2022 and conducted topic modelling using latent Dirichlet allocation. Lexicons were created using GPT-4 to evaluate the eight dimensions of place experience for each topic.FindingsThe study found that Darlington had higher counts in the sensorial, behavioural, designed and mundane dimensions of place experience than Luton. Conversely, Luton had a higher prevalence of the affective and intellectual dimensions, attributed to political and faith-related tweets.Originality/valueThe study introduces a novel approach that uses AI-generated lexicons for place experience. These lexicons cover four facets, two intentions and two intensities of place experience, enabling detection of words from any domain. This approach can be useful not only for town and destination brand managers but also for researchers in any field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.