Abstract

Apoptosis is conventionally regarded as an evolutionarily conserved and genetically controlled process of programmed cell death confined to metazoan organisms. However, recently, conserved features of apoptosis have also been demonstrated in unicellular eukaryotes (Holzmuller et al. Parasitology 132:S19-S32, 2006; Le Chat et al. Mol Biochem Parasitol 153:41-47, 2007; Madeo et al. Curr Opin Microbiol 7:655-660, 2004; Welburn et al. Parasitology 132:S7-S18, 2006; Jensen et al. Science 216:1230-1233, 1982) including malaria parasites (Al-Olayan et al. Int J Parasitol 32:1133-1143, 2002; Ch'ng et al. Cell Death Dis 1:e26, 2010; Meslin et al. J Infect Dis 195:1852-1859, 2007; Picot et al. Trans R Soc Trop Med Hyg 91:590-591, 1997; Raj et al. Nature 582:104-108, 2020). P. falciparum glutamic-acid-rich protein (PfGARP) is an antigen of 80kDa that is uniquely expressed on the exofacial surface of red blood cells (RBCs) infected by early-to-late-trophozoite-stage P. falciparum parasites (Raj et al. Nature 582:104-108, 2020). We have recently demonstrated that antibodies against PfGARP bind to the PfGARP displayed on the surface of P. falciparum trophozoite-infected RBCs and trigger apoptosis in the intracellular parasites (Raj et al. Nature 582:104-108, 2020). This is the first demonstration of antibody-induced apoptosis in blood-stage malaria parasites and is characterized by several conserved features such as crisis form morphology, loss of mitochondrial membrane potential, loss of integrity of food vacuole, activation of caspase-like cysteine proteases, and fragmentation of chromosomal DNA. Here we describe the assays used to detect these features of apoptosis in the mature blood stage of malaria parasites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call