Abstract
Due to the growing demand for customised products, companies have faced increasing product and process complexity levels. To address this issue, manufacturing processes should become more flexible. One of the most promising technologies to achieve this goal is collaborative robotics (or ‘cobots’). In collaborative assembly processes, human and robot combine their skills. However, the co-existence of humans and cobots in the same workspace may influence the operators’ perception of assembly complexity. The analysis and control of assembly complexity are crucial to achieving better performances in terms of process quality and operators’ well-being. Many qualitative methods have been proposed in the literature to provide a holistic assessment of assembly complexity. This paper proposes a novel method to define a quantitative scale of perceived assembly complexity, based on Thurstone Law of Comparative Judgements. This method was applied to an experimental case-study concerning the assembly of three different products in two modalities (i.e. manual and collaborative). Regression analysis showed that the perceived complexity may be related to the occurrence of process failures and to the perceived workload. The method also proved capable of identifying assembly processes where cobot assistance was helpful, providing process designers with a supporting tool to minimise perceived complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.