Abstract

BackgroundAsthma is one of the most common chronic diseases in childhood, occurring in up to 10% of all children. Exercise-induced bronchoconstriction (EIB) is indicative of uncontrolled asthma and can be assessed using an exercise challenge test (ECT). However, this test requires children to undergo demanding repetitive forced breathing manoeuvres. We aimed to study the electrical activity of the diaphragm using surface electromyography (EMG) as an alternative measure to assess EIB.MethodsForty-two children suspected of EIB performed an ECT wearing a portable EMG amplifier. EIB was defined as a fall in FEV1 of more than 13%. Children performed spirometry before exercise, and at 1, 3 and 6 min after exercise until the nadir FEV1 was attained and after the use of a bronchodilator. EMG measurements were obtained between spirometry measurements.ResultsTwenty out of 42 children were diagnosed with EIB. EMG peak amplitudes measured at the diaphragm increased significantly more in children with EIB; 4.85 μV (1.82–7.84), compared to children without EIB; 0.20 μV (−0.10–0.54), (p<0.001) at the lowest FEV1 post-exercise. Furthermore, the increase in EMG peak amplitude could accurately distinguish between EIB and non-EIB using a cut-off of 1.15 μV (sensitivity 95%, specificity 91%).ConclusionEMG measurements of the diaphragm are strongly related to the FEV1 and can accurately identify EIB. EMG measurements are a less invasive, effort-independent measure to assess EIB and could be an alternative when spirometry is not feasible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.