Abstract

AbstractThe global efforts on reducing methane (CH4) emissions was emphasized in COP 28 and the potential for improved estimation became feasible through bottom-up data acquisition with advanced remote sensing technology. The objectives of this study were to extract summer rice and winter crop cultivation areas based on satellite images and to incorporate into estimating CH4 emissions in South Korea for the year 2020. Satellite images of Sentinel-1 and Sentinel-2 were acquired from European Space Agency. Rice paddy was classified with backscattering coefficient from Sentinel-1 images, while the normalized difference vegetation index from Sentinel-2 images was used to identify winter cropping field. The equation of IPCC guidelines was used to estimate CH4 emissions by incorporating the areas of rice paddy and winter crop extracted with the respective satellite image. National farming statistics were used to determine the scaling factors for paddy organic matter and water management practices. The estimated areas for rice paddy and winter crop cultivation were 712,237 ha and 117,840 ha, respectively. The rice paddy areas were primarily concentrated in the western regions of the Korean peninsula, whereas winter crop cultivation was predominantly found in southern part of the country. The total amount of CH4 emissions was 6272 Gg CO2 eq./yr when considering rice straw and winter cropping practices into estimation (modified Tier 2 method). This represents a 7% increase compared to the method that considered solely the rice straw incorporation (current Tier 2 method). The CH4 emissions per unit area were also 8.82 tons CO2 eq./ha/yr with the modified Tier 2 method, indicating a 10% greater compared to the current Tier 2 method. Substantial CH4 emissions were primarily concentrated in western regions where extensive rice paddy cultivation occurs, while greater CH4 emissions per unit area were predominantly found in southern regions with substantial winter crop cultivation. The study findings hold importance for improving the accuracy of CH4 emissions estimation by employing bottom-up approach that utilizes satellite imagery to assess rice paddy and winter cropping areas. Further study would be needed to incorporate field-based data on rice crop management practices, such as rice straw and water management, to further refine CH4 emission estimation method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call