Abstract

The early Eocene climate is characterized by gradual warming towards the Early Eocene Climatic Optimum (EECO). Environmental changes related to this global long-term warming trend are recorded in Ypresian marine sediments in Belgium. The test geochemistry of Nummulites enables the reconstruction of palaeotemperature changes based on the incorporation of Mg into the calcite test without complications connected to other proxies. Early Eocene Nummulites occur in high abundances in the inner shelf deposits of the southern edge of the North Sea Basin, providing multiple sample locations. Because this palaeotemperature proxy has only recently been developed, we investigated a methodological approach. We assessed the relationship between test geochemistry and (1) preservation state, (2) test size and (3) a cleaning procedure to evaluate the use of this new proxy. We propose a simplified cleaning procedure (ethanol–methanol–peroxide) for well-preserved specimens within the smaller size range (radius <3 mm). Using this methodology, a long-term palaeotemperature increase of 7°C is reconstructed from the pre-EECO (±54 Ma) to the EECO (±51 Ma), with a mean EECO palaeotemperature of 28°C. This corresponds with previous studies, strengthening the use of Nummulites geochemistry as a proxy for reconstructing long-term climate change in the Southern North Sea Basin. Supplementary material: All geochemical data are available at https://doi.org/10.6084/m9.figshare.c.5811457

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call