Abstract
AC impedance spectroscopy is widely used to evaluate performance limitations in energy storage and conversion devices (e.g., batteries, supercapacitors, and fuel cells). This work shows that integrating the resistive elements in an equivalent circuit as functions of steady-state current enables one to recover overpotentials associated with different processes (e.g., ion migration, charge transfer, and diffusion) in nonlinear electrochemical power supplies. Closed form expressions for diffusion overpotentials are derived using this method for transmissive and reflective boundary conditions and three electrode symmetries (planar, cylindrical, and spherical). Discussion is also extended to macroscopically homogenous porous electrodes which are relevant for most real-world devices. Overall, the approach described herein is a powerful tool to identify rate-limiting steps and guide material/component design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of The Electrochemical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.