Abstract

Heavy reliance of East Africa (EA) on rain-fed agriculture makes it vulnerable to drought-induced famine. Yet, most research on EA drought focuses on meteorological aspects with little attention paid on agricultural drought impacts. The inadequacy of in-situ rainfall data across EA has also hampered detailed agricultural drought impact analysis. Recently, however, there has been increased data availability from remote sensing (rainfall, vegetation condition index – VCI, terrestrial water storage – TWS), reanalysis (soil moisture and TWS), and land surface models (soil moisture). Here, these products were employed to characterise EA droughts between 1983 and 2013 in terms of severity, duration, and spatial extent. Furthermore, the capability of these products to capture agricultural drought impacts was assessed using maize and wheat production data. Our results show that while all products were similar in drought characterisation in dry areas, the similarity of CHIRPS and GPCC extended over the whole EA. CHIRPS and GPCC also identified the highest proportion of areas under drought followed closely by soil moisture products whereas VCI had the least coverage. Drought onset was marked first by a decline/lack of rainfall, followed by VCI/soil moisture, and then TWS. VCI indicated drought lag at 0–4 months following rainfall while soil moisture and TWS products had variable lags vis-à-vis rainfall. GLDAS mischaracterized the 2005–2006 drought vis-à-vis other soil moisture products. Based on the annual crop production variabilities explained, we identified CHIRPS, GPCC, FLDAS, and VCI as suitable for agricultural drought monitoring/characterization in the region for the study period. Finally, GLDAS explained the lowest percentages of the Kenyan and Ugandan annual crop production variances. These findings are important for the gauge data deficient EA region as they provide alternatives for monitoring agricultural drought.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.