Abstract

Recent investigations on a novel multi-regime burner (MRB) configuration showed significant deviations in the CO flame structure compared to the limiting cases of premixed and non-premixed flames. However, a prior analysis revealed that major species and temperature are captured by both limiting cases (Butz et al., Combust. Flame, 2019 [1]). In the present work, large eddy simulations using an artificial thickened flame approach and tabulated chemistry are performed for the MRB configuration. Simulation results are compared to experimental Raman/Rayleigh/CO-LIF and PIV measurements, confirming the applicability of the modeling approach. Further, simulation results are consistent with the aforementioned prior analysis. Special attention is paid to predicting CO by analyzing the conditional flame structure and the effects of local residence time. This combined CO and residence time analysis reveals that local convective and diffusive transport processes should be resolved simultaneously with the unsteady flow, instead of being tabulated. Substantial improvements in CO are achieved when local transport is considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.