Abstract

Mineralization rates of non-volatile petroleum hydrocarbons (HCs) in five different oil-contaminated soils with initial HC contents ranging from 0.1 to 13 g kg-1 are estimated as a function of environmental factors. The aim of the study is threefold, (i) to study the relevance of environmental factors that may influence the mineralization rate, (ii) to compare mineralization rates estimated in two experiments at different scales, after standardizing them to environmental reference conditions, (iii) to evaluate the CO2 production rate as a measure for the mineralization rate of HCs. Experiments were performed at laboratory scale (30–50 cm3 soil volume) in closed-jars under constant environmental conditions and in lysimeters (0.81 m3 soil volume) under dynamic climatic and hydrological conditions. A biodegradation model, coupled to transport models for soil heat, water, and gas dynamics is employed for data interpretation. The transport models are used to simulate the environmental conditions that influence the mineralization rate in the non-steady lysimeter experiments. The results show that temperature, O2 concentration and HC content have an effect on the mineralization rates. Water content could not be identified as a direct governing environmental factor. However, an indirect effect of water content is that it influences the effective gas diffusion coefficient in soils. The CO2 production rate seems to be a good quantity to express the mineralization rate of HCs for HC contents>1 g kg-1. Measured CO2 production rates standardized to reference conditions are similar for the two different experimental scales. This demonstrates that the usage of biodegradation rates obtained in the laboratory to predict the biodegradation rates under field conditions is sound, as long as the differences in environmental conditions have been taken into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.