Abstract

The disordered Mg–Sc body-centered cubic (bcc) phase is both lightweight and strong; however, the system is impractical for general industrial use due to the high cost of scandium. We propose a computationally efficient metric that assesses ternary rare earth element additions that may stabilize the bcc phase at lower Sc concentrations. We find that the bcc phase is stabilized by the ternary addition of Y or Er, but not by La, Ce, or Nd, and we validate these predictions by experimental production and characterization of Mg–Sc–(Y,Er,Nd) alloys. The results suggest a computationally efficient method to anticipate integration of ternary elements into binary systems using cluster expansions of constituent binaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call