Abstract

ABSTRACTRandomized experiments are considered the gold standard for causal inference because they can provide unbiased estimates of treatment effects for the experimental participants. However, researchers and policymakers are often interested in using a specific experiment to inform decisions about other target populations. In education research, increasing attention is being paid to the potential lack of generalizability of randomized experiments because the experimental participants may be unrepresentative of the target population of interest. This article examines whether generalization may be assisted by statistical methods that adjust for observed differences between the experimental participants and members of a target population. The methods examined include approaches that reweight the experimental data so that participants more closely resemble the target population and methods that utilize models of the outcome. Two simulation studies and one empirical analysis investigate and compare the methods’ performance. One simulation uses purely simulated data while the other utilizes data from an evaluation of a school-based dropout prevention program. Our simulations suggest that machine learning methods outperform regression-based methods when the required structural (ignorability) assumptions are satisfied. When these assumptions are violated, all of the methods examined perform poorly. Our empirical analysis uses data from a multisite experiment to assess how well results from a given site predict impacts in other sites. Using a variety of extrapolation methods, predicted effects for each site are compared to actual benchmarks. Flexible modeling approaches perform best, although linear regression is not far behind. Taken together, these results suggest that flexible modeling techniques can aid generalization while underscoring the fact that even state-of-the-art statistical techniques still rely on strong assumptions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.