Abstract

Absolute binding free energy (ABFE) calculations can be an important part of the drug discovery process by identifying molecules that have the potential to be strong binders for a biomolecular target. Recent work has used free energy perturbation (FEP) theory for these calculations, focusing on a set of 16 inhibitors of the severe acute respiratory syndrome coronavirus 2 main protease (Mpro). Herein, the same data set is evaluated by metadynamics (MetaD), four different docking programs, and molecular mechanics with generalized Born and surface area solvation. MetaD yields a Kendall τ distance of 0.28 and Pearson r2 of 0.49, which reflect somewhat less accuracy than that from the ABFE FEP results. Notably, it is demonstrated that an ensemble docking protocol by which each ligand is docked into the 13 crystal structures in this data set provides improved performance, particularly when docking is carried out with Glide XP (Kendall τ distance = 0.20, Pearson r2 = 0.71), Glide SP (Kendall τ distance = 0.19, Pearson r2 = 0.66), or AutoDock 4 (Kendall τ distance = 0.21, Pearson r2 = 0.55). The best results are obtained with "superconsensus" docking by averaging the 52 results for each compound using the 4 docking protocols and all 13 crystal structures (Kendall τ distance = 0.18, Pearson r2 = 0.73).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.