Abstract

The serial nature of reactions involved in the RNA life-cycle motivates the incorporation of delays in models of transcriptional dynamics. The models couple a transcriptional process to a fairly general set of delayed monomolecular reactions with no feedback. We provide numerical strategies for calculating the RNA copy number distributions induced by these models, and solve several systems with splicing, degradation, and catalysis. An analysis of single-cell and single-nucleus RNA sequencing data using these models reveals that the kinetics of nuclear export do not appear to require invocation of a non-Markovian waiting time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call