Abstract
Land cover conversion is known to alter the hydrologic regimes of watersheds. While connections between land cover and runoff are generally known, not all land cover alterations result in detectable changes in streamflow, and the quantity of land cover change required to yield a detectable change in streamflow is unknown over a range of watersheds. The connection between land cover change and streamflow was explored for a Hydro-Climatic Data Network (HCDN) watershed. HCDN is a database of USGS gauged streams commonly used to assess the influence of climatic change on streamflow. Watersheds included in the HCDN have been screened to represent "unimpaired" streamflow. Implicit in this definition is the assumption that land cover is relatively unaltered over the streamflow time series. Imagery from the North American Landscape Characterization (NALC) project was analyzed to detect land cover change from 1972 to 1992 in an Oregon watershed selected from the HCDN. A post-classification change detection yielded a 44% rate of landscape change over 20 years. Changes in land cover classes by dominant soil types were paired with the L-THIA model of Purdue University to quantify the effect of land cover change on runoff. Despite land cover changes, simulations confirmed that runoff remained unchanged. This report summarizes recommended steps for applying NALC imagery to detection of landscape change in other watersheds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.