Abstract

The standard mass action, which assumes that infectious disease transmission occurs in well-mixed populations, is popular for formulating compartmental epidemic models. Compartmental epidemic models often follow standard mass action for simplicity and to gain insight into transmission dynamics as it often performs well at reproducing disease dynamics in large populations. In this work, we formulate discrete time stochastic susceptible-infected-removed models with linear (standard) and nonlinear mass action structures to mimic varying mixing levels. Using simulations and real epidemic data, we demonstrate the sensitivity of the basic reproduction number to these mathematical structures of the force of infection. Our results suggest the need to consider nonlinear mass action in order to generate more accurate estimates of the basic reproduction number although its uncertainty increases due to the addition of one growth scaling parameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.