Abstract
First results of a multi-disciplinary hyporheic monitoring study are presented from the newly established Steinlach Test Site in Southern Germany. The site is located in a bend of the River Steinlach (mean discharge of 1.8 m³/s) underlain by an alluvial sandy gravel aquifer connected to the stream. The overall objective is a better understanding of hyporheic exchange processes at the site and their interrelations with microbial community dynamics and biochemical reactions at the stream–groundwater interface. The present paper focuses on the distribution of lateral hyporheic exchange fluxes and their associated travel times at the Steinlach Test Site. Water level dynamics in various piezometers correspond to the different domains of hydraulic conductivity in the shallow aquifer and confirms hyporheic exchange of infiltrated stream water across the test site. Hydrochemical compositions as well as increased damping of continuous time series of electrical conductivity (EC) and temperature at the respective piezometers confirmed the inferred distribution of hyporheic flowpaths. Mean travel times ranging from 0.5 days close to the stream to more than 8 days in the upstream part of the test site could be estimated from deconvolution of EC and δ18O–H2O data. The travel times agree well with the presumed flowpaths. Mg/Ca ratios as well as model fits to the EC and δ18O data indicate the presence of an additional water component in the western part of the test site which most likely consists of hillslope water or groundwater. Based on the mean travel times, the total lateral hyporheic exchange flux at the site was estimated to be of the order of 1–2 L/s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.