Abstract

Since the 20th century, the temperature on the Qinghai–Tibetan Plateau (QTP) has increased at a rate of 2–3 times that of global warming. Consequently, the soil temperature and active layer thickness have also increased, which have directly caused severe degradation of the frozen ground on the QTP. Using a hydrological model driven by climate and vegetation forcing, the spatial and temporal changes in the hydrothermal characteristics of the Upper Yellow River Basin (UYRB) from 1960 to 2019 were modeled and the mechanism of the changes was analyzed. During the past six decades, the soil temperature in the UYRB exhibited an increasing trend. The degradation of permafrost in the UYRB was accompanied by thickening of the active layer, a reduction of the maximum depth of the seasonal frost penetration, and continuous extension of the basin thawing time. This degradation was also associated with the increase in the soil moisture content and decrease in the soil ice content, resulting in degradation of the permafrost area by one-tenth of the total area in the UYRB. The reduction of the permafrost area and the thickening of the active layer can profoundly impact hydrological processes and ecosystems. These findings play a critical role in designing efficient strategies to manage and protect frozen ground and serve as a valuable reference for understanding the consequences of frozen ground degradation globally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.