Abstract

Microbial enzymatic degradation of biowaste is a sustainable and environmentally friendly solution for eliminating biowaste pollution. It is the underlying cause of the ever-increasing demand for harnessing multipurpose microbes to work as an entity under given complex processes. Twelve bacterial strains of bovine manure were evaluated for their hydrolytic enzyme activity and optimization. Six enzymes; cellulase, amylase, pectinase, chitinase, protease, and gelatinase were selected based on their corresponding abundant biowaste, that is, cellulose, proteinaceous, chitin, and polymeric starchy biowaste. The preliminary qualitative screening was followed by quantitative enzyme production as well as optimal enzyme production conditions. Irrespective of their sample source and origin, all strains showed the highest enzyme production when grown at 40°C for 72 h with pH 7. Comparatively, among the selected enzymes, strains were higher producers of cellulase, protease, and gelatinase. The present study reported the first time Brevibacillus parabrevis (DZ.15) as pectinase producer, Achromobacter spanius (DZ.1) as amylase-protease-chitinase producer, Achromobacter piechaudii (DZ.12) as pectinase-chitinase-gelatinase producer, and two Achromobacter kerstersii (DZ.16 andDZ.17) as pectinase-chitinase producers. Therefore, this study suggested that bovine manure microbes exhibiting novel potential can be used for hydrolysis of environmental biowaste.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.