Abstract
Tidal range energy comprises a vast theoretical resource of 9,220 TWh per year, globally, with advantageous characteristics of predictability, generation flexibility and reliability. Approximately 13% of this resource lies within the United Kingdom’s (UK) coastal waters, where it could supply up to 12% of annual electricity demand. Tidal range energy conversion traditionally involves constructing and operating large-scale coastal or offshore impoundments (O10-100 km2), which will redefine near and far-field water levels and flow patterns. The relationship between the scale of the impoundment area and hydrodynamic impact has not been investigated for UK sites. To address this, we develop a two-dimensional (depth-averaged) TELEMAC model of the Irish Sea, and simulate six scenarios involving tidal range schemes of increasing basin area, from 25 to 150 km2, located on the North Wales coast in an open coastal basin setting. Results indicate that far-field (30−150 km) changes to the amplitude of the semi-diurnal (M2) tidal constituent exhibit a linear relationship with impoundment area and volume (correlation coefficient R=0.95 and R=0.96, respectively). The largest impoundment (150 km2) caused far-field changes in maximum surface elevation (2<ηmax<3 cm); near-field surface elevation was reduced (ηmax>3 cm).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.