Abstract

I have been involved in a publication showing that sublethal exposures to thiamethoxam, a neonicotinoid pesticide, increase the risk of homing failure in foraging honeybees (Henry et al., 2012a). Along with other recent toxicological studies on free-ranging bees (Gill et al., 2012; Schneider et al., 2012; Whitehorn et al., 2012), those results have motivated the European Food Safety Agency (EFSA, 2012) to reconsider the relevance of risk assessment of plant protection products on bees, currently based on the sole lethality criterion. Among the potential indicators of sublethal hazard, homing failure is a suitable candidate (EFSA, 2013) because (i) it integrates multiple physiological and cognitive functions such as orientation, spatial memory, associative learning and muscular flight activity, and (ii) it may be straightforwardly converted into a mortality rate. Homing failure studies are now being replicated for extending the study of behavioral impairments to other substances (Matsumoto, 2013) and even to pathogens (Li et al., 2013). The forthcoming expansion of homing studies in bees underscores the need to set standards for homing failure measurement. In our original contribution (Henry et al., 2012a), we calculated mortality due to homing failure, mhf, as the proportion of nonreturning treated foragers relative to expectations given by the proportion of returning control foragers. This relative control-treatment homing difference returns a mortality probability equivalent to the statistical effect size of the exposure. However, Guez (2013a) criticized our calculation of mhf, arguing that dividing the homing difference by control expectations falsely inflates the mortality estimates. Instead, he claimed mhf should simply read as the absolute control-treatment homing difference. Beside our in-depth reply, alerting on the necessity to properly fix experimental biases (Henry and Decourtye, 2013), Guez (2013b) persisted in his criticism. As a surrogate for our relative homing difference formula [Equation 1 in Guez (2013b)], he recommends either the use of his absolute homing difference formula [Equation 2 in Guez (2013b)] or an alternative formula measuring the proportional increase in post-exposure homing failure [Equation 3 in Guez (2013b)]. I show here that both alternatives are intractable and cannot be properly implemented in a honeybee population dynamics model (Khoury et al., 2011) as in our original study (Henry et al., 2012a). I aim to resolve the disagreement by clarifying several key features of the population models involved. I understand that Guez (2013a,b) implicitly assumes that homing experiments are based on the same temporal scale than the parameters of the honeybee population dynamics model (Khoury et al., 2011). This, however, is incorrect, as shown below. His tentative Equation 2 underestimates mortality, while Equation 3 may return severely overestimated mortalities. I hope this cautionary note will help risk assessors identifying some important pitfalls and challenges in the assessment of post-exposure homing failure in bees.

Highlights

  • I have been involved in a publication showing that sublethal exposures to thiamethoxam, a neonicotinoid pesticide, increase the risk of homing failure in foraging honeybees (Henry et al, 2012a)

  • Among the potential indicators of sublethal hazard, homing failure is a suitable candidate (EFSA, 2013) because (i) it integrates multiple physiological and cognitive functions such as orientation, spatial memory, associative learning and muscular flight activity, and (ii) it may be straightforwardly converted into a mortality rate

  • I understand that Guez (2013a,b) implicitly assumes that homing experiments are based on the same temporal scale than the parameters of the honeybee population dynamics model (Khoury et al, 2011)

Read more

Summary

Introduction

I have been involved in a publication showing that sublethal exposures to thiamethoxam, a neonicotinoid pesticide, increase the risk of homing failure in foraging honeybees (Henry et al, 2012a). In our original contribution (Henry et al, 2012a), we calculated mortality due to homing failure, mhf, as the proportion of nonreturning treated foragers relative to expectations given by the proportion of returning control foragers. This relative control-treatment homing difference returns a mortality probability equivalent to the statistical effect size of the exposure.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.