Abstract

Advances in global positioning system (GPS) technology have dramatically enhanced the ability to track and study distributions of free-ranging livestock. Understanding factors controlling the distribution of free-ranging livestock requires the ability to assess when and where they are foraging. For four years (2008–2011), we periodically collected GPS and activity sensor data together with direct observations of collared cattle grazing semiarid rangeland in eastern Colorado. From these data, we developed classification tree models that allowed us to discriminate between grazing and non-grazing activities. We evaluated: (1) which activity sensor measurements from the GPS collars were most valuable in predicting cattle foraging behavior, (2) the accuracy of binary (grazing, non-grazing) activity models vs. models with multiple activity categories (grazing, resting, traveling, mixed), and (3) the accuracy of models that are robust across years vs. models specific to a given year. A binary classification tree correctly removed 86.5% of the non-grazing locations, while correctly retaining 87.8% of the locations where the animal was grazing, for an overall misclassification rate of 12.9%. A classification tree that separated activity into four different categories yielded a greater misclassification rate of 16.0%. Distance travelled in a 5 minute interval and the proportion of the interval with the sensor indicating a head down position were the two most important variables predicting grazing activity. Fitting annual models of cattle foraging activity did not improve model accuracy compared to a single model based on all four years combined. This suggests that increased sample size was more valuable than accounting for interannual variation in foraging behavior associated with variation in forage production. Our models differ from previous assessments in semiarid rangeland of Israel and mesic pastures in the United States in terms of the value of different activity sensor measurements for identifying grazing activity, suggesting that the use of GPS collars to classify cattle grazing behavior will require calibrations specific to the environment and vegetation being studied.

Highlights

  • Advances in the use of global positioning system (GPS) technology to track domestic and wild herbivores have revolutionized the study of ungulate distribution and movement patterns

  • We developed binary models predicting whether or not a given 5-minute interval was classified as grazing based on activity sensor data and the distance moved between GPS fixes

  • Shape of the frequency distributions differed among Grazing, Resting and Traveling most notably in terms of percent of the 5-minute interval in which the Y-axis sensor was in the headdown position (Headdown), and distance moved in the 5-minute interval (DIST)

Read more

Summary

Introduction

Advances in the use of global positioning system (GPS) technology to track domestic and wild herbivores have revolutionized the study of ungulate distribution and movement patterns. Over intervals of a minute or less, movement rates or distances may be better able to discriminate between resting, feeding and traveling, but require collection of substantially larger datasets and associated increases in equipment battery requirements [7,8]. Many commercially available GPS collars can be configured to include an activity sensor which records movements in a given direction over a particular time period, and the angle of the collar which indicates the orientation of the head of the animal When these activity sensors are used alone, or in combination with distances moved by the animal, it is possible to more accurately discriminate between grazing and non-grazing activities [9,10]. Previous studies have not examined the degree to which calibrations are robust with respect to interannual variation in precipitation and forage availability

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call