Abstract

Here we present a systematic study on the performance of different GW approaches: G0W0, G0W0 with linearized quasiparticle equation (lin-G0W0), and quasiparticle self-consistent GW (qsGW), in predicting core level binding energies (CLBEs) on a series of representative molecules comparing to Kohn-Sham (KS) orbital energy-based results. KS orbital energies obtained using the PBE functional are 20-30 eV lower in energy than experimental values obtained from X-ray photoemission spectroscopy (XPS), showing that any Koopmans-like interpretation of KS core level orbitals fails dramatically. Results from qsGW lead to CLBEs that are closer to experimental values from XPS, yet too large. For the qsGW method, the mean absolute error is about 2 eV, an order of magnitude better than plain KS PBE orbital energies and quite close to predictions from ΔSCF calculations with the same functional, which are accurate within ∼1 eV. Smaller errors of ∼0.6 eV are found for qsGW CLBE shifts, again similar to those obtained using ΔSCF PBE. The computationally more affordable G0W0 approximation leads to results less accurate than qsGW, with an error of ∼9 eV for CLBEs and ∼0.9 eV for their shifts. Interestingly, starting G0W0 from PBE0 reduces this error to ∼4 eV with a slight improvement on the shifts as well (∼0.4 eV). The validity of the G0W0 results is however questionable since only linearized quasiparticle equation results can be obtained. The present results pave the way to estimate CLBEs in periodic systems where ΔSCF calculations are not straightforward although further improvement is clearly needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.