Abstract

Gravity Recovery and Climate Experiment (GRACE) level two (L2) data is used in estimating the groundwater storage changes (GWSC) in the Nubian Sandstone Aquifer System (NSAS). This set of data consists of spherical harmonics coefficients with specific degree and order. The GRACE data is de-correlated using a sixth degree polynomial in order to reduce the effect of the noise error resulting from the correlation between the spherical harmonics coefficients with the same degree parity. The GRACE estimates of GWSC are smoothed using Gaussian filter with half width of 1000 km. This half width is chosen in order to maximize the correlation between the GRACE estimates of GWSC and previous modeling results of the NSAS. The loss in groundwater storage occurring in each of the four countries sharing the NSAS is calculated to assess the sustainability of using the NSAS as a water resource in each country. The overarching finding in this study is that NSAS is losing its groundwater storage at a very high rate. Also, it is found that Egypt is the fastest in losing its groundwater storage from the NSAS. This loss of groundwater storage in Egypt may not necessarily be resulting from in-country extractions because of the trans-boundary nature of this aquifer. The GRACE-based estimates are found to be close to available data and previous modeling results of the NSAS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call