Abstract

Summary This work presents a conceptual framework for assessing geological deformation using distributed fiber-optic sensing (DFOS) that is applicable to several common sources of strain encountered during the reservoir life cycle. Common applications include strain associated with seismic and aseismic fault motion, natural and hydraulic fracture dilation and closure, and poroelastic strain evolution during injection and production. We briefly review common geological sources of strain observed in reservoir settings, then discuss the main fiber-based techniques for recording strain with attention to key deformation characteristics at different spatial and temporal resolutions. The relationships between common acquisition parameters, such as spatial resolution, data sampling rate, ability to measure relative and absolute strain, and a priori knowledge of geological strain including geomechanical models, and the availability of baseline measurements are discussed. Finally, a few examples are shown from experimental studies at the Aramco Research Center in Houston, Texas, USA. The facilities host a shallow vertical well instrumented with fiber as well as a surface fiber network embedded in a cement pad. We highlight several data sets acquired using Brillouin and Rayleigh frequency shift (BFS and RFS), low-frequency distributed acoustic sensing (LF-DAS), and DAS interrogation techniques, with a focus on concepts helpful for interpreting field strain. Using these insights as a conceptual framework for assessing geological deformation leads to more informed decisions when planning DFOS acquisitions and interpreting associated strain data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call