Abstract
Abstract The ability of coupled atmosphere–ocean general circulation models (AOGCMs) to simulate variability in regional and global atmospheric dynamics is an important aspect of model evaluation. This is particularly true for recurring large-scale patterns known to be correlated with surface climate anomalies. Here, the authors evaluate the ability of all Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) historical Twentieth-Century Climate in Coupled Models (20C3M) AOGCM simulations for which the required output fields are available to simulate three patterns of large-scale atmospheric internal variability in the North Atlantic region: the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), and the Atlantic multidecadal oscillation (AMO); and three in the North Pacific region: the El Niño–Southern Oscillation (ENSO), the Pacific decadal oscillation (PDO), and the Pacific–North American Oscillation (PNA). These patterns are evaluated in two ways: first, in terms of their characteristic temporal variability and second, in terms of their magnitude and spatial locations. It is found that historical total-forcing simulations from many of the AOGCMs produce seasonal spatial patterns that clearly resemble the teleconnection patterns resulting from identical calculation methods applied to reanalysis and/or observed fields such as the 40-yr ECMWF Re-Analysis, NCEP–NCAR, or Kaplan sea surface temperatures (SSTs), with the exception of the lowest-frequency pattern, AMO, which is only reproduced by a few models. AOGCM simulations also show some significant biases in both spatial and temporal characteristics of the six patterns. Many models tend to either under- or overestimate the strength of the spatial patterns and exhibit rotation about the polar region or east–west displacement. Based on spectral analysis of the time series of each index, models also appear to vary in their ability to simulate the temporal variability of the teleconnection patterns, with some models producing oscillations that are too fast and others that are too slow relative to those observed. A few models produce a signal that is too periodic, most likely because of a failure to adequately simulate the natural chaotic behavior of the atmosphere. These results have implications for the selection and use of specific AOGCMs to simulate climate over the Northern Hemisphere, with some models being clearly more successful at (i.e., displaying less bias in) simulating large-scale, low-frequency patterns of temporal and spatial variability over the North Atlantic and Pacific regions relative to others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.