Abstract

The present study has assessed the possible water stress scenarios over six nuclear power plant locations (inland plants at Kakrapar, Kota, and Narora and coastal plants at Kodankulam, Kalpakkam, and Tarapur) of India based on downscaled climatic products from 12 coupled model inter-comparison project 5 (CMIP5) simulations. Firstly, statistically downscaled scenarios over power plant locations for water temperature, precipitation, evapotranspiration, and sea surface temperature (SST) have been developed using various statistical downscaling methods. Secondly, the water stress has been quantified by formulating a multivariate standardized water stress index (MSWSI) based on water temperature and freshwater availability (precipitation minus evapotranspiration) over inland plants and a univariate index from the SST for coastal plants. Results have indicated that three inland power plants are not expecting any scarcity of freshwater availability. However, they have been projected to face high to severe water stress from middle to end of the century due to a higher warming rate of water temperature under global warming conditions. Similarly, three coastal plants have also been projected to prevail high to severe water stress through enhanced SST warming. Therefore, the efficiency and productivity of the nuclear plants may reduce under changing climatic conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call