Abstract
Developmental dyslexia is characterized by a deficit of phonological awareness whose origin is related to atypical neural processing of speech streams. This can lead to differences in the neural networks that encode audio information for dyslexics. In this work, we investigate whether such differences exist using functional near-infrared spectroscopy (fNIRS) and complex network analysis. We have explored functional brain networks derived from low-level auditory processing of nonspeech stimuli related to speech units such as stress, syllables or phonemes of skilled and dyslexic seven-year-old readers. A complex network analysis was performed to examine the properties of functional brain networks and their temporal evolution. We characterized aspects of brain connectivity such as functional segregation, functional integration or small-worldness. These properties are used as features to extract differential patterns in controls and dyslexic subjects. The results corroborate the presence of discrepancies in the topological organizations of functional brain networks and their dynamics that differentiate between control and dyslexic subjects, reaching an Area Under ROC Curve (AUC) up to 0.89 in classification experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.