Abstract

Dak Lak is a province in the Central Highlands region of Vietnam, with a large area of forests and forestry land. However, the forest cover has changed dramatically in recent times due to the influence of human activities and climate change. This article presents the results of assessing forest cover changes in Dak Lak province from Landsat satellite image data for the period 2000 – 2020. Three Landsat satellite image scenes, including Landsat 5 TM images taken in March 2000 and February 2010 and Landsat 8 OLI image taken in February 2020 are used to classify forest cover. Three common machine learning techniques, including Random Forest (RF), Support Vector Machine (SVM), Classification and Regression Tree (CART) and the traditional maximum likelihood classification algorithm are used to classify forest cover in the study area, thereby choosing the method with the highest accuracy. The results show that the RF algorithm has the highest accuracy in classifying forest cover from multi-temporal Landsat images by comparing the overall accuracy value and the Kappa coefficient. The obtained results are used to build forest cover change maps in the period 2000 - 2010, 2010 - 2020 and 2000 - 2020. The results received in the study provide information to help managers in monitoring and protecting forest resources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.