Abstract

What hinders current models for fluid transportation in three-dimensional (3D) fracture system from considering fracture roughness is model complexity, which makes it hard to get convergent results. Therefore, we propose an electrical circuit (EC) model to simulate fracture flow, with each rough rock fracture taken as an EC with distributed electrical resistances, where the voltage and current are taken as the counterparts of pressure and flow rate, respectively. The robustness of EC model is validated against the computational fluid dynamics (CFD) simulations and laboratory experiments. Additionally, the EC model exhibits a very high computational efficiency (takes several seconds) compared with that of the CFD model (takes a couple of minutes). The proposed EC model is expected to have broader applications in fracture flow analysis as it applies not only to persistent fractures with tiny mechanical apertures but also to non-persistent fractures having substantial portions of contact areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.