Abstract

In the Everglades Agricultural Area (EAA), Florida, cultivating rice in flooded paddies is becoming increasingly popular to conserve water and soil health. Flood depth is a critical factor affecting the discharged water quality, soil carbon, and yield production. However, few studies have comprehensively investigated the optimal flood depth in EAA, considering multi-functional indices. To address this gap, we investigated drainage water quality, water quantity, nutrient uptake, soil carbon, and rice yield in rice paddies in histosol soils over a two-year period at four flood depths (5, 10, 15, and 20 ​cm). For each flood depth, averaged over two years, total outflow loadings of suspended solids, nitrogen, phosphorus, and potassium were significantly reduced by 40 ​%, 38 ​%, 36 ​%, and 32 ​%, respectively, compared to inflow water loadings (p ​< ​0.001). Soil organic carbon (SOC) in 5, 10, 15, and 20 ​cm flood treatments increased annually at a rate of 3.85 ​%, 5.64 ​%, 6.86 ​%, and 6.86 ​%, respectively; for these same treatments, soil active organic carbon (AOC) decreased annually at rates of 11.75 ​%, 8.63 ​%, 20.07 ​%, and 8.48 ​%, and rice grain yield was 4488, 5103, 5450, and 5386 ​kg ​ha−1, respectively. Overall, considering the water quality, SOC, AOC, and rice yield production, irrigating rice paddies at a flood depth of 15 ​cm most effectively improves water quality, increases carbon sequestration, reduces active carbon, and yields more rice than other flood depths. By evaluating the effects of flood depth on the soil–water–plant nexus in a holistic manner, we propose a more sustainable and environmentally friendly mode of rice cultivation within the EAA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.