Abstract

Thin-shell artificial reef (AR) structures with spatial internal volumes have demonstrated superior stock recruitment ability and material efficiency than many gravity-based reef blocks, and cementitious materials, given the easy-to-tailor nature, remains the most popular in reef constructions to date. However, under constant seawater immersion, external sulfate attack (ESA) introduces a major and uncertain reliability concern to this type of AR system, due to the inherent material randomness. This study is concerned with developing a novel stochastic modelling framework for assessing the ESA under material uncertainty. In this paper, the main difficulty associated with the stochastic ESA modelling is identified for the first time, and a novel machine learning aided chemophysical modelling approach is proposed. The performance of the developed framework is carefully examined through the analyses on two types of cementitious materials under ESA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.