Abstract

Managing per- and polyfluoroalkyl substance (PFAS) contamination has gained worldwide attention due to their ubiquitous occurrence in water systems. Anion exchange resins (AERs) have been proven effective in removing both long-chain and short-chain PFASs. In this study, an explicit model was developed to describe the breakthrough behavior of an individual PFAS as a single solute onto anion exchange resin in a column filtration process. The model was further modified to predict the breakthrough curve of co-existing PFASs on AER in multi-solute systems by incorporating a separation factor describing the competitive adsorption and a blockage factor describing the loss of adsorption sites. Rapid small-scale column tests (RSSCTs) were performed with six AERs of various properties and three model PFASs in both single- and multi-solutes systems. The breakthrough behaviors of RSSCTs for both single- and multi-solute systems were found adequately described by the models developed in this study. The experiments and accompanied model simulations reveal some important relationships between the AER performance and the properties of both the AERs and the PFASs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call