Abstract

Endocrine disrupting chemicals (EDCs) are introduced into the aquatic environment through industrial and municipal effluents along with urban and agricultural runoffs. Exposure of aquatic organisms to EDCs may lead to hormonal disruption and adverse health effects. The goals of our study were: to collect anchovy and mussel samples from the coastal region of Karachi, to use the yeast estrogen screen (YES) bioassay in estimating xeno-estrogen content in these samples, and to investigate if the bioassay could be used to quantify known amounts of 17β-estradiol (E2) injected into cod and salmon fillets. Results of the studies showed that mussel estrogenic activity in Karachi decreased in the order of Buleji point 1 (8.91 ± 4.77, mean ± SD) > Paradise point 1 (1.72 ± 0.81) > Paradise point 2 (0.61 ± 0.84) ng E2 equivalents/g wet wt (p < 0.05). By comparison, anchovy estrogenic activity at Korangi/Phitti Creek was much higher than at Manora. Together, these results confirmed previous reports that both Buleji point 1 and Korangi/Phitti Creek were the most contaminated areas of Karachi. The YES bioassay was only a semi-quantitative method in determining the contents of xeno-estrogens in aquatic organisms; it consistently overestimated the amounts of E2 injected into cod and salmon fillets due to additive and/or non-additive interactions between E2 and endogenous estrogens. Nevertheless, the YES bioassay was able to identify the contaminated sites in the coastal region of Karachi.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.