Abstract

The use of renewable biodiesel and additives diversifies transportation fuel supply. Combustion tests on neat ultra-low sulfur No.2 diesel (D100) and its blends with biodiesel and the n-butanol additive were conducted to investigate environmental impacts and tradeoffs in engine emission and power output. The testing results show measurable changes in power output and engine emission, particularly in diesel particulate matter (DPM) size distribution and black carbon compositions. The binary diesel-biodiesel blend D80B20 (80% D100 and 20%B100 by volume) offers reduced PM and black carbon emission, but higher NOx in engine exhaust. Comparatively the tertiary diesel-biodiesel-butanol blend B15Bu5 (80% D100, 15% B100, and 5% Bu100 by volume) shows superior environmental tradeoff in the black carbon and NOx emission than D80B20. Both fuel blends suffer a 3.0–5.6% increase in brake-specific fuel consumption. At higher combustion temperature, the butanol-oxygenated diesel fuel produces DPMs of smaller size, higher number concentrations, greater OC fractions, and more amorphous black carbon particles. The peak DPM aerodynamic size dpmax for D80B20 and B15Bu5 blends is 0.20–0.32 μm, smaller than >0.40 μm dpmax for D100 and the 0.30 μm cut-off size of regular DPM filters. For an internal combustion engine capable of accommodating biodiesel and water fraction in the fuel mixture, the B15Bu5 blend offers a viable fuel alternative according to the comparative testing results. The use of biodiesel and butanol additive in petroleum diesel can decrease the DPM emission, while the undesired NOx formation in tradeoff can be managed through optimizing the tertiary composition of petroleum diesel, biodiesel, and fuel additives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.