Abstract

As 5G mobile networks continue to proliferate in dense urban environments, it becomes increasingly important to understand and mitigate excessive electromagnetic field (EMF) exposure. This study investigates how the downlink EMF exposure levels of 5G millimeter wave (mm-wave) mobile networks are influenced by the integration of multi-active reconfigurable intelligent surfaces (RISs), using a ray-tracing approach. Our research employs a comprehensive two-step methodology: Firstly, we introduce a new RIS-assisted 5G mm-wave network planning technique. This technique leverages a machine learning (ML) approach for the classification of multi-RIS clusters. The primary goal is to optimize coverage while minimizing the number of required RIS deployments. This is achieved by strategically placing RISs based on the ML classification, ultimately aiming to enhance network efficiency. Secondly, we conducted a thorough comparative analysis, evaluating the impact of both passive and active RISs on EMF exposure level throughout a dense urban environment. Passive RIS and active RIS differ in their adaptability to changing network conditions. The result shows that the influence of multi-active RISs on EMF exposure is significant (about 7.5 times higher) compared to passive RISs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.