Abstract

Neophobic predator avoidance, where prey actively avoid novel stimuli, is thought to allow prey to cope with the inability to predict predation risk (i.e. uncertainty) while reducing the costs associated with learning. Recent studies suggest that neophobia is elicited as a response to unpredictable and elevated mean predation risk, and is linked to experience with diverse novel cues. However, no research has disentangled the effects of predator density and diversity on neophobia. We conditioned Trinidadian guppies (Poecilia reticulata) to high- or low-diversity predator model treatments paired with high, intermediate, or low concentrations of conspecific alarm cues as a proxy for predator density. We tested behavioural responses to a novel stimulus vs. a water control to determine differences in neophobia among treatments. We found that neophobic shoaling behaviour was shaped by mean risk (predator density). However both density and diversity shaped neophobic freezing, and to a weaker extent, neophobic area use. Our research suggests that predator diversity might elicit neophobic responses in guppies, but only when mean risk is high enough. The relationship between neophobia and components of predation risk is becoming increasingly relevant as ecological uncertainty becomes more prevalent with increasing climate change, anthropogenic impacts, and invasive species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call