7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.3390/su16229882
Copy DOIJournal: Sustainability | Publication Date: Nov 13, 2024 |
License type: CC BY 4.0 |
Due to growing water demands and changing hydro-meteorological variables brought on by climate change, drought is becoming an increasingly serious climate concern. The Al-Baha region of Saudi Arabia is the subject of this study because it is susceptible to both agricultural and meteorological droughts. This study investigates how climate change affects patterns of drought in Al-Baha by analyzing four drought indices (Agricultural Standardized Precipitation Index (aSPI), the Standardized Precipitation Index (SPI), the Rainfall Deficiency Index (RDI), and the Effective Reconnaissance Drought Index (eRDI)) for the years 1991–2022. Analysis of rainfall data was carried out to classify drought events according to their duration, frequency, and severity. Results showed that severe droughts occurred in 2009, 2010, 2012, 2016, and 2022, with 2010 being the worst year. Results also indicated a notable decrease in precipitation, which has resulted in extended dry spells. Several indices indicate that this tendency has significant ramifications for agriculture, particularly in areas where farming is a major economic activity. In addition, the possible occurrence of hydrological drought was also observed based on the negative values for the Reservoir Storage Index (RSI) in Al-Baha. Projections for the future under two Representative Concentration Pathways (RCPs) showed notable variations in temperature and precipitation. Both the RCP4.5 (low emission) and the RCP8.5 (high emission) projection scenarios indicate that drought conditions will likely worsen further. Depending on the emission scenario, it is projected to show a temperature increase of 1–2 °C, whereas the variability in precipitation projections indicates significant uncertainty, with a reduction change in the range of 1.2–27% between 2050 and 2100. The findings highlight the urgent need for proactive adaptation strategies, effective water resource management, and the development of sophisticated drought prediction tools. Addressing these challenges is crucial for sustaining agriculture and managing water scarcity in Saudi Arabia in the face of increasing drought risk.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.